Reference-frame-independent quantum key distribution
نویسندگان
چکیده
منابع مشابه
Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding
We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state...
متن کاملReference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.
We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-in...
متن کاملTight Reference Frame-Independent Quantum Teleportation
We give a tight scheme for teleporting a quantum state between two parties whose reference frames are misaligned by an action of a finite symmetry group. Unlike previously proposed schemes, ours requires no additional tokens or data to be passed between the participants; the same amount of classical information is transferred as for ordinary quantum teleportation, and the Hilbert space of the e...
متن کاملDevice-independent quantum key distribution
Quantum key distribution allows two parties connected by a quantum channel to establish a secret key that is unknown to any unauthorized third party. The secrecy of this key is based on the laws of quantum physics. For security, however, it is crucial that the honest parties are able to control their physical devices accurately and completely. The goal of device-independent quantum key distribu...
متن کاملQuantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum
We present a new implementation of the BB84 quantum key distribution protocol that employs a d-dimensional Hilbert space spanned by spatial modes of the propagating beam that have a definite value of orbital angular momentum. Each photon carries log d bits of information, increasing the key generation rate of the protocol. The states used in the transmission part of the protocol are invariant u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2010
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.82.012304